

A Review on Parallelization of Node based Game
Tree Search Algorithms on GPU

Ms. Rutuja U. Gosavi1, Prof. Payal S. Kulkarni2
1Student,Computer Engg. Department, GES’s R. H. Sapat COE Nashik

Pune University, India
2Professor,Computer Engg. Department, GES’s R. H. Sapat COE Nashik

Pune University, India

Abstract: Game tree search is a classical problem in the field
of game theory and artificial intelligence. Focus of the system
is on how to leverage massive parallelism capabilities of GPUs
to accelerate the speed of game tree algorithms and propose a
concise and general parallel game tree algorithm on GPUs.
Comparison can be done for classical CPU-based game tree
algorithms with pruning and without pruning. The purpose is
to identify possibilities of tasks parallelization when searching
and assess game search trees that would perform better on
SIMD processors of graphics cards. For game tree search
CPU did not produce improvement but GPU surpasses a
single CPU if high level of parallelism is achieved; because its
searching is in BFS manner whereas CPU precedes BFS
approach. The focus is on combination of DFS and BFS. Thus
selection will be the depth-first search on CPU due to memory
limit and use breadth-first search on GPU. Approach can be
made for multi-computer environments, which look into
better pruning algorithms for the GPU-based GTS
algorithms. GTS algorithm used for games having much
higher complexity to find best real time response, such as
CHESS, SUDOKU, and HEX to weigh up the effectiveness of
parallelization on the GPU. It intends to look into hybrid
CPU-GPU solutions with heuristic GPU activation for deeper
searches.

Keywords: Alpha-Beta Pruning, CHESS, HEX, GPU, GTS,
Parallel Computing, SIMD, SUDOKU.

I.INTRODUCTION

Graphical processing unit accelerators have
emerged as a powerful support for massively parallel
computing. Parallel work is implemented on GPU with the
CUDA development toolkit.
 CUDA stands for Compute Unified Device
Architecture it is a parallel computing platform and
programming model created by NVIDIA and implemented
by the GPUs that they produce. CUDA gives developers
direct access to the virtual instruction set and memory of
the parallel computational elements in CUDA GPUs.

Lots of applications have get benefits from the massive
parallelism capability of GPU [2] [3] [4]. GPU used to
solve some specific AI problems successfully [5].It is a
way to solve compute-intensive AI problems due to its
SIMD architecture specialized for parallel computing.

Single Instruction Multiple Data architecture describes
computers with multiple processing elements that perform
the same operation on multiple data points simultaneously.

Thus, such machines exploit data level parallelism; there
are simultaneous computations, but only a single
instruction at a given moment. Game tree search is
important in artificial intelligence because one way to pick
the best move in a real time games.

A. WHY GTS ON GPU?

 In game theory, a game tree search is a directed
graph whose nodes are positions in a game and whose
edges are moves. The complete game tree for a game is the
game tree starting at the initial position and containing all
possible moves from each position; the complete tree is the
same tree as that obtained from the extensive-form game
representation.
 Game Tree Search is a combinatorial game theory
problem, it is difficult to find an optimal solution for many
computer games like Connect6 [6] and Chess [7] due to
their exponential time complexity. It focuses on two topics:
one is to find better GTS algorithms to obtain near-optimal
solutions; another one is to use advanced computing
technologies to accelerate the speed of GTS algorithms for
applications asking for real-time response, e.g., online
computer game, decision tree, expert system and etc.

B. WHY PARALLELISM?
 To satisfy such a requirement like to reduce
computational time for games, parallel computing
technologies introduced to improve the performance of
GTS algorithms. CPU-based parallelism methods have
been studied for many years [8] [9].
 The parallel computation on the GPU is performed
as a set of concurrently executing thread blocks, which are
organized into a 1D or 2D grid. They can be 1D, 2D or 3D
with each thread designated by a unique combination of
indices. The hardware schedules the execution of blocks on
the multiprocessors in units of 32 threads called warps.
Computing on graphics processing units is the utilization of
a GPU, which typically handles computation only for
computer graphics, to perform computation in applications
traditionally handled by the CPU.
 The use of multiple graphics cards in one
computer, or large numbers of graphics chips, further
parallelizes the already parallel nature of graphics
processing.

Rutuja U. Gosavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7385-7388

www.ijcsit.com 7385

 GPU works on a SIMD approach and it is best
method to find the best move in a computer game. Graphics
processing Unit achieve in some specific tasks higher
performance than conventional processors. These basic
tasks are decomposed into higher number of smaller
subtasks that can be processed con-currently by graphics
card. It improves the computational time to find answer
which is the feasible optimal solution.

Fig 1: Structure of GPU

 From structure of GPU, simply assigning
instruction to the multiple threads it works on finding next
best move of player GTS.

II.BACKGROUND AND MOTIVATION
 The common goal of GTS is finding of player’s
move that maximizes his/her chances of winning. Basically
in combinatorial game theory problem it is hard to find near
optimal solution due to its exponential time complexity. It
is necessary thing to find near optimal solution and to
accelerate the speed of GTS for real time responses from
application. E.g. Real time games on computer.
 In fact, lots of applications get benefits from
massive parallelism capability of GPUs. The parallelism
can be implemented at different levels of computer system
using multiprocessor level, multiple computer level. GPUs
have independently developed to perform data-parallel
computation using multiple cores, the main fact to take
advantage of this technology by performing some
computation on GPUs that has traditionally been done on
CPUs. A recent trend in computer architecture is the move
from traditional, single core processors to multi-core
processors and further to many-core or massively multi-
core processors. The result of this trend is that
computational problems which can take advantage of
multiple threads with significant speed up. To achieve fast
real-time response parallelism is necessary approach. GPU
is a feasible way to improve the performance of GTS.
 Thus it is essential to investigate if GTS can get
benefit from GPU and compare with GPU-based approach
with CPU-based approaches.

III.RELATED WORK
According to previous studies some challenges arise like:

1. Complexity of algorithm design on SIMD
architecture.

2. Low performance of divergence on GPU for rule-
based computer games.

3. Low pruning efficiency of parallel GTS
algorithms.

 Solution of these problems depends on exploiting
parallelism potential of GPU [1].
 A representative methods used in computer game
includes minimax algorithm, negamax algorithm with
alpha-beta pruning etc. [11]. These algorithms are very
widely used in searching game trees.
 Principal Variation Splitting is a parallel GTS
algorithm on CPU.
 In PVS, the first nodes marked by 1 in the game
tree should be searched serially first by a processor p0
before parallel search of other nodes begins. Let’s say First
node is principal node [10]. When Searching of it is
finished by a processor, as per algorithm all processor starts
effort to search unvisited nodes. The processor that finished
the search task will inform its updated results to other
processors and take the next unassigned branch to
calculate. When there are no branches left and all
processors finished their tasks, the PVS algorithm halts and
return the best move to the player. The limitation of the
PVS algorithm is that a processor who has finished its task
needs to wait for other processors’ finish to start up another
around of calculation. It wastes computing time of till next
processor gives an calculation to it.

Therefore Enhanced PVS is introduced, the idea is
assigning subtrees to idle processors from other busy
processors. That result in significant performance
improvement for an unbalance tree and experiments prove
its efficiency.

Dynamic Tree Splitting is method for parallel
game tree search, which uses a peer-to-peer model on
multi-processor systems. It based on a shared global list of
active split-points SP-LIST, by which all processors find
uncalculated nodes to process. At the beginning one
processor takes the root node of the game tree and other
nodes remain in the idle state. An idle processor looks up
SP-LIST to find a branched node in the game tree to
traverse the subtree.
 If there is no split points left in SP-LIST, the idle
processor broadcasts a HELP message to all processors. A
busy processor receives that message and copies the state
of the subtree to SP-LIST. The idle processor looks into
SP-LIST again and obtains a split point and search the
subtree from that point. The DTS algorithm completes after
all processors stop in an idle state and no branched nodes
left. As compared with PVS and EPVS, the advantage of
DTS algorithm is its usability and scalability achievement.
It is found that DTS algorithm can search nodes
concurrently and efficiently.

Rutuja U. Gosavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7385-7388

www.ijcsit.com 7386

A. CHALLENGES FOR GTS ALGORITHM DESIGN
ON GPU

The work is to use GPU to process thousands of game
tree nodes simultaneously. GPU is very sensitive to the
instruction divergence caused by the control flow in a
warp [1].
For GPU-based GTS algorithms, the kernel of GPU is the
function to calculate the node, which includes lots of
control flow instructions because of rule based games. Due
to the SIMD feature of GPU, the tree-based approach on
CPUs cannot be easily followed in GPU. The new approach
fully utilizes the potential of GPU and development of
efficient GPU-based GTS algorithms.

There is need to solve following challenges:
1. Complex control logic of parallel search on GPU

Design of GPU-based parallel GTS algorithm is
much more complex than CPU-based algorithm
design. On CPUs searching is done according to
the alpha-beta search. However, on GPUs,
necessity is to unfold the recursive search and
maintain the game tree in the memory. This
significantly increases the system complexity,
there is need to design algorithms carefully.

2. Low performance of divergent execution on GPU
for rule-based computer games. GPU have low
performance in divergent execution. Most of the
GTS related calculation is rule-based; there are
many divergences in node calculation which leads
to a low speed up and affect the overall
performance of GTS algorithms.

3. Low pruning efficiency for parallel tree search. As
GTS algorithms can prevent duplicated
calculations on game tree nodes. The pruning
depends on the accumulated knowledge of all
situations in the previous nodes, which implies
that calculations of different nodes may depend on
each other and it is hard to process them in
parallel.

The problem still exists and there is a need to keep
balance between pruning efficiency and parallelism to
obtain best performance for GPU-based algorithm
To solve the above challenges, a node based parallel
method to utilize the potential of GPU can be adopted.

B. NODE-BASED APPROACH
To solve the challenging problems in Section III

following ideas to solve GTS problems on GPU:
1. To adopt node-based parallel computing for game

tree search.
The tree-based approach is not suite for GPU
architecture. The approach is assigning a set of
nodes from one or multiple subtrees to processors,
while the tree-based approach is while the tree-
based approach is assigned to processors. The
benefit of method is not only taking advantages of
the high concurrency of GPU, but also avoiding
the complexity of tree splitting.

2. The combination of depth-first and breadth-first
search

Commonly, there are two methods to search the
tree, the depth-first and the breadth-first search
In this approach calculating a many tree nodes in
the same depth in the current game tree, which is
the breadth-first search. In addition, each cycle in
the search process takes in the deepest nodes of
the current game tree, which is the depth-first
search. In GPU based GTS algorithm, selection is
the depth-first search on CPU due to memory limit
and use breadth-first search on GPU by scheduling
the nodes with the same depth to GPU in each
cycle.

3. Hybrid programming on both CPUs and GPU.
 There are many control logic in GTS algorithms.

CPU architecture is good at complex execution of
programs containing control statements such as
switch, condition and loops, GPU architecture
good in intensive computation on data with the
same type. Therefore, third method is to use both
CPU and GPU architecture in GTS algorithm [1].

C. APPROACHES

Using above three ideas calculation of leaf and
branches performed on GPU concurrently.
 In empirical study two configurations were used
games. The first one adopts the GPU-based GTS algorithm
without the tree pruning. With this configuration,
verification is on the stand-alone capability of GPU to
process massive nodes calculations in parallel [1].
The second configuration focuses on classical pruning
technologies as well as the parallel search algorithm on
GPU to evaluate the practical performance [1].
From the study it was observed that the speedup drop
happens when both of the branch and leaf nodes calculation
is done using a node-based approach.

IV.CONCLUSION

 This review paper focuses on a Parallelization of
Node based Game Tree Search Algorithms on GPU.
Parallel GTS algorithm presented three approaches for
obtaining speedy optimal solution of real time computer
games on GPU.
 By use of both CPU and GPU architecture, the
approach can take advantage of the capability of GPU to
compute massive nodes in parallel and GPUs flexibility to
accelerate tree search and pruning. This approach can be
tested by implementing it for SUDOKU, HEX and CHESS
games. Results of implementation can be compared with
serial implementation of game tree search.

ACKNOWLEDGMENT
 We are glad to express our sentiments of gratitude
to all who rendered their valuable guidance to us. We
would like to express our appreciation and thanks to Prof.
Dr. P. C. Kulkarni, Principal, G. E. S. R. H. Sapat College
of Engg., Nashik. We are also thankful to Prof. N. V.
Alone, Head of Department, Computer Engg., G. E. S. R.
H. Sapat College of Engg., Nashik. We thank the
anonymous reviewers for their comments.

Rutuja U. Gosavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7385-7388

www.ijcsit.com 7387

REFERENCES
[1] Liang Li, Hong Liu, HaoWang, Taoying Liu, Wei Li, “A Parallel

Algorithm for Game Tree Search using GPGPU”, IEEE Transaction
on Parallel and Distributed Systems,31 July,2014

[2] X. Huo, V. T. Ravi, W. Ma, and G. Agrawal, “Approaches for
parallelizing reductions on modern GPU”, International Conference
on High Performance Computing (HiPC), 2010, pp. 1-10.

[3] W. Ma and G. Agrawal, “An integer programming framework for
optimizing shared memory use on GPU”, International Conference
on High Performance Computing (HiPC), 2010, pp. 1-10.

[4] J. Soman, M. K. Kumar, K. Kothapalli, and P. J. Narayanan,
“Efficient Discrete Range Searching primitives on the GPU with
applications”, 2010 International Conference on High Performance
Computing (HiPC), 2010, pp. 1-10.

[5] A. Bleiweiss, “GPU accelerated pathfinding”, The 23rd ACM
Symposium on Graphics Hardware, 2008, pp. 65-74.

[6] I.C. Wu and D.Y. Huang, “A New Family of k-in-a-Row Games”,
Advances in Computer Games, H. van den Herik, S.-C. Hsu, T. Hsu,
and H. Donkers, Eds. Springer Berlin /Heidelberg, 4250:180-194,
2006

[7] C. E. Shannon, “Programming a computer for playing chess”,
Philosophical Magazine Series 7, 41(314):256-275, 1950.

[8] M. G. Brockington, A Taxonomy of Parallel Game-Tree Search
Algorithms, 1996.

[9] R. M. Karp and Y. Zhang, “On parallel evaluation of game trees”,
The first annual ACM symposium on Parallel algorithms and
architectures, 1989, pp. 409-420.

[10] V. Manohararajah, “Parallel alpha-beta search on shared memory
multiprocessors”, 2001.

[11] P. Borovska and M. Lazarova, “Efficiency of parallel minimax
algorithm for GTS”, The 2007 international conference on Computer
systems and technologies, 2007, pp. 14:1-14:6.

Rutuja U. Gosavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7385-7388

www.ijcsit.com 7388

